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Using deep learning to predict abdominal age from
liver and pancreas magnetic resonance images
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Chirag J. Patel 1✉

With age, the prevalence of diseases such as fatty liver disease, cirrhosis, and type two

diabetes increases. Approaches to both predict abdominal age and identify risk factors for

accelerated abdominal age may ultimately lead to advances that will delay the onset of these

diseases. We build an abdominal age predictor by training convolutional neural networks to

predict abdominal age (or “AbdAge”) from 45,552 liver magnetic resonance images [MRIs]

and 36,784 pancreas MRIs (R-Squared= 73.3 ± 0.6; mean absolute error= 2.94 ± 0.03

years). Attention maps show that the prediction is driven by both liver and pancreas ana-

tomical features, and surrounding organs and tissue. Abdominal aging is a complex trait,

partially heritable (h_g2= 26.3 ± 1.9%), and associated with 16 genetic loci (e.g. in PLEKHA1

and EFEMP1), biomarkers (e.g body impedance), clinical phenotypes (e.g, chest pain),

diseases (e.g. hypertension), environmental (e.g smoking), and socioeconomic (e.g educa-

tion, income) factors.
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W ith age, different abdominal organs and tissues
undergo important changes1. For example, the liver
changes both at the cellular (e.g hepatocyte volume,

polyploidy, accumulation of dense bodies, reduced smooth
endoplasmic reticulum, reduced number of mitochondria) and
the macroscopic (e.g reduced volume by 20–40%, up to 35%
reduced blood flow) levels, becoming more vulnerable to age-
related liver diseases such as liver fibrosis, non-alcoholic fatty
liver disease, alcoholic liver disease, and hepatitis C2,3. Similarly,
the pancreas undergoes fibrosis, atrophies, becomes fattier and
vulnerable to age-related pancreas-diseases, leading to age
related-pancreas disorders such as diabetes, cancer, gallstones and
inflammatory pancreatic disease4–6. Other organs, such as the
gastrointestinal tract, undergo similar processes7.

Biological age predictors can help understand the etiology of
abdominal organ aging, with the hope to delay the onset of the
aforementioned age-related diseases, and others. Biological age
represents the state of the body of an individual and it is the true
underlying cause of age-related diseases. It is in contrast with
chronological age --commonly referred to as age-- the time since
the individual’s birth. Biological age predictors are typically built by
training machine learning models to predict chronological age. The
prediction outputted by the model can then be interpreted as the
individual’s biological age. Predictors have already been built on
diverse organ datasets such as brain magnetic resonance images
[MRIs]8, heart MRIs9, electrocardiograms9,10, carotid ultrasound
images11, pulse wave analysis records11, full-body X-ray images12,13,
chest X-ray images14, eye fundus images15, facial features16, blood
samples17, DNA methylation18, transcriptomics19, proteomics20,
microbiome21–23 and physical activity measurements24. However,
to our knowledge, abdominal MRIs such as liver and pancreas
MRIs have not been used to predict age.

In the following, we built the first abdominal age predictor,
called AbdAge. We leveraged 45,552 liver MRIs and 36,784
pancreas MRIs (Fig. 1A) collected from UK Biobank25 partici-
pants aged 37–82 year-old and trained deep convolutional neural
networks to predict age from these datasets. We then performed a
genome-wide association study [GWAS] to estimate the herit-
ability of accelerated abdominal aging and to identify single
nucleotide polymorphisms [SNPs] associated with this pheno-
type. Similarly, we performed an X-wide association study
[XWAS] to identify biomarkers, clinical phenotypes, diseases,
environmental and socioeconomic variables associated with
accelerated abdominal aging. (Fig. 1B).

Results
Chronological age prediction. We leveraged the UK Biobank, a
dataset containing 48,067 liver MRIs and 39,940 pancreas MRIs
(Fig. 1A) collected from participants aged 37–82 years (Supple-
mentary Fig. S1). After filtering out low quality images, we used
deep convolutional neural networks and transfer learning to predict
age from 45,552 liver MRIs (R-Squared [R2]= 71.5 ± 0.6%; mean
absolute error [MAE]= 3.24 ± 0.04 years; root mean squared error
[RMSE]= 4.1 ± .05 years) and from 36,784 pancreas MRIs
(R2= 70.3 ± 0.8; MAE= 3.30 ± 0.04 years; RMSE of 4.1 ± 0.04
years), which we then combined into an ensemble model that
predicted age (or AbdAge) with a R2 of 76.3 ± 0.6, a MAE of
2.94 ± 0.03 years, and a RMSE of 3.7 ± 0.03. (Fig. 2).

We defined liver age as the prediction outputted by the
liver MRIs-based model, pancreas age as the prediction outputted
by the pancreas MRIs-based model, and abdominal age as
the prediction outputted by the ensemble model leveraging
both liver and pancreas MRIs. All predictions were corrected
for the analytical bias in the age prediction residuals (see
Methods).

Identification of features driving abdominal age prediction.
For liver MRI-based models, attention maps highlighted the liver
along with other abdominal structures such as the stomach, the
spleen, muscle, and adipose tissue (Fig. 3). Similarly, for pancreas
MRI-based models, attention maps highlighted diverse abdom-
inal regions across participants, including the liver (Fig. 4).

Genetic factors and heritability of accelerated abdominal aging.
We performed three genome wide association studies [GWASs] to
estimate the GWAS-based heritability of abdominal (AbdAge,
hg2= 26.3 ± 1.9%), liver MRI-based (hg2= 22.3 ± 1.5%), and pan-
creas MRI-based (hg2= 22.1 ± 1.9%) accelerated aging. The dis-
tribution of the accelerated AbdAge, liver age, and pancreas age is
seen in Supplementary Fig. S2. GWAS quality control is documented
in the Supplementary Methods and Supplementary Figs. S3–S4.

We identified three, two, and eleven independent loci associated
with Abdomen (AbdAge), Pancreas, and Liver Accelerated Age
respectively (Table 1, Fig. 5, Supplementary Fig. S5, Supplementary
Data Table S1). We found two different loci in AbdAge (rs932274,
p= 1E−10) and Pancreas Accelerated Age (rs2672597, p= 3.9E−9)
respectively that are close to genes implicated in age-related macular
degeneration (PLEKHA1, ARMS2, HTRA1). We found a locus with
lead SNP (rs201407787) in common with both AbdAge (p= 1E−9)
and Liver Age (p= 1E−11) that maps to an intergenic region of
EFEMP1 (Supplementary Data Table S1).

Biomarkers, clinical phenotypes, diseases, environmental and
socioeconomic variables associated with accelerated abdominal
aging. We use “X” to refer to all nongenetic variables measured in
the UK Biobank (biomarkers, clinical phenotypes, diseases, family
history, environmental and socioeconomic variables). We per-
formed an X-Wide Association Study [XWAS] to identify which
of the 4372 biomarkers classified in 21 subcategories (Supple-
mentary Data Table S3), 187 clinical phenotypes classified in
11 subcategories (Supplementary Data Table S5), 2073 diseases
classified in 26 subcategories (Supplementary Data Table S8), 92
family history variables (Supplementary Data Table S11), 265
environmental variables classified in nine categories (Supple-
mentary Data Table S14), and 91 socioeconomic variables clas-
sified in five categories (Supplementary Data Table S17) are
associated (p-value threshold of 0.05 and Bonferroni corrected)
with accelerated abdominal aging in the different dimensions. We
summarize our findings for general accelerated abdominal aging
below. Please refer to the supplementary data tables (Supple-
mentary Data Table S5, Supplementary Data Table S4, Supple-
mentary Data Table S6, Supplementary Data Table S7,
Supplementary Data Table S9, Supplementary Data Table S10,
Supplementary Data Table S15, Supplementary Data Table S16,
Supplementary Data Table S18, Supplementary Data Table S19)
for a summary of non-genetic factors associated with general,
liver MRI-based and pancreas MRI-based accelerated abdominal
aging. The exhaustive results can be found in Supplementary
Data Table S20 and explored at https://www.multidimensionality-
of-aging.net/xwas/univariate_associations.

Out of the 17,459 associations tested, 1456 (8.34%) were
significant, with an average absolute value of 0.044 (range:
0.022−0.091; IQR: .034−0.053). In the below, we describe some
of the top-ranking correlations.

Biomarkers associated with accelerated abdominal aging. The
three biomarker categories most associated with accelerated
abdominal aging are body impedance, blood pressure, and pulse
wave analysis. Specifically, 100.0% of impedance biomarkers are
associated with accelerated abdominal aging, with the three largest
associations being with right arm impedance (correlation= 0.056),
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left arm impedance (correlation= 0.055), and whole body impe-
dance (correlation= 0.042). 66.7% of blood pressure biomarkers are
associated with accelerated abdominal aging, with the two associa-
tions being with diastolic blood pressure (correlation= 0.050) and
systolic blood pressure (correlation= 0.036). 46.7% of pulse wave
analysis biomarkers are associated with accelerated abdominal aging,
with the three largest associations being with diastolic blood pressure

(correlation= 0.050), systolic blood pressure (correlation= 0.048),
and mean arterial pressure (correlation= 0.046).

Conversely, the three biomarker categories most associated
with decelerated abdominal aging are hand grip strength,
cognitive symbol digit substitution, and bone heel densitometry.
Specifically, 100% of hand grip strength biomarkers are associated
with decelerated abdominal aging, with the two associations being
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Fig. 1 Overview of the datasets and analytic pipeline. A Sample liver and pancreas MRI images, both raw and preprocessed with a contrasting filter.
B Schematic of Analytic pipeline. B: Sample sizes are in parentheses.

Fig. 2 Prediction performance (R2 and RMSE) for AbdAge, Liver and Pancreas Age models. “Contrast” denotes contrasted image. *represent ensemble
models. R2: R-squared of predicted versus actual age. RMSE: Root-mean-squared error. Error bars represent 2 SD of the bootstrapped estimate.
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with left and right hand grip strengths (respective correlations of
0.056 and 0.049). 100.0% of symbol digit substitution (a cognitive
test) biomarkers are associated with decelerated abdominal aging,
with the two associations being with the number of symbol digit
matches made correctly (correlation= 0.036) and the number of
symbol digit matches attempted (correlation= 0.035). 83.3% of
heel bone densitometry biomarkers are associated with deceler-
ated abdominal aging, with the three largest associations being
with heel quantitative ultrasound index (correlation= 0.091),
heel bone mineral density (correlation= 0.090), and speed of
sound through heel (correlation= 0.089). In addition, we
observed smaller correlations between blood, anthropometry,
and biochemical variables (Supplementary Figure S6).

Clinical phenotypes associated with accelerated abdominal aging.
The three clinical phenotype categories most associated with accel-
erated abdominal aging are general health, chest pain, and breathing.
Specifically, 50.0% of general health phenotypes are associated with
accelerated abdominal aging, with the three largest associations being
with overall health rating (correlation= 0.069), weight loss in the last
year (correlation= 0.065), and long-standing illness, disability, or
infirmity (correlation= 0.050). 50.0% of chest pain phenotypes are
associated with accelerated abdominal aging, with the two associa-
tions being with chest pain or discomfort walking normally (corre-
lation= 0.032) and chest pain due to walking ceasing when standing
still (correlation= 0.023). 50.0% of breathing phenotypes are asso-
ciated with accelerated abdominal aging (one association: shortness
of breath walking on level ground; correlation= 0.031).

Conversely, the two clinical phenotype categories associated
with decelerated abdominal aging are sexual factors (age first had
sexual intercourse; correlation= 0.030) and general health
(gained weight or no weight change in the last year, respective
correlations of 0.032 and 0.024).

Diseases associated with accelerated abdominal aging. The three
disease categories most associated with accelerated abdominal aging
are cardiovascular diseases, general health, and pulmonary diseases.
Specifically, 6.5% of cardiovascular diseases are associated with
accelerated abdominal aging, with the three largest associations
being with hypertension (correlation= 0.058), atrial fibrillation and
flutter (correlation= 0.045), and chronic ischaemic heart disease
(correlation= 0.029). 6.0% of general health variables are associated
with accelerated abdominal aging, with the three largest associations
being with personal history of disease (correlation= 0.046), per-
sonal history of medical treatment (correlation= 0.042), and
receiving medical care (correlation= 0.030). 4.8% of pulmonary
diseases are associated with accelerated abdominal aging, with the
three largest associations being with chronic obstructive pulmonary
disease (correlation= 0.034), asthma (correlation= 0.026), and
pleural effusion (correlation= 0.024).

Environmental variables associated with accelerated abdominal
aging. The three environmental variable categories most associated
with accelerated abdominal aging are smoking, sun exposure and
alcohol intake. Specifically, 37.5% of smoking variables are asso-
ciated with accelerated abdominal aging, with the three largest

Fig. 3 Sample attention maps for liver MRI-based models on raw and contrasted images. “Warm” filter colors (more red) highlight regions of high
importance according to the Grad-RAM map. Actual chronological ages are obscured.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29525-9

4 NATURE COMMUNICATIONS |         (2022) 13:1979 | https://doi.org/10.1038/s41467-022-29525-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


associations being with pack years adult smoking as proportion of
lifespan exposed to smoking (correlation= 0.090), pack years of
smoking (correlation= .086), and past tobacco smoking: smoked on
most or all days (correlation= 0.066). 20.0% of sun exposure vari-
ables are associated with accelerated abdominal aging, with the three

largest associations being with facial aging: about your age (corre-
lation= 0.039), facial aging: do not know (correlation= 0.038), and
time spent outdoors in summer (correlation= 0.036). 17.2% of
alcohol intake variables are associated with accelerated abdominal
aging, with the three largest associations being with red wine intake

Fig. 4 Sample attention maps for pancreas MRI-based models on raw and contrasted images. “Warm” filter colors (more red) highlight regions of high
importance according to the Grad-RAM map. Actual chronological ages are obscured.

Table 1 Genome-wide significant loci implicated in accelerated Abdomen Age (AbdAge), Pancreas Age, and Liver Age.

Age phenotype rsID Chr Position Alleles MAF Beta SE P-value # SNPs Closest genes

AbdAge rs201407787 2 56071109 C;T 0.123 0.215 0.036 1.90E−09 20 EFEMP1
AbdAge rs2216113 2 206436181 G;A 0.151 0.178 0.033 4.40E−08 5 PARD3B
AbdAge rs932274 10 124225364 C;T 0.269 −0.175 0.028 3.70E−10 9 PLEKHA1;ARMS2;HTRA1
Pancreas Age rs2672597 10 124226199 G;A 0.270 −0.165 0.030 3.90E−08 9 PLEKHA1;ARMS2;HTRA1
Pancreas Age rs7256564 19 33889593 A;G 0.308 0.155 0.028 3.60E−08 17 PEPD
Liver Age rs552571374 2 25148623 G;C 0.101 −0.202 0.037 3.90E−08 41 ADCY3;DNAJC27;EFR3B
Liver Age rs201407787 2 56071109 C;T 0.123 0.225 0.034 3.90E−11 20 EFEMP1
Liver Age rs3791675 2 56111309 C;T 0.231 −0.160 0.027 4.70E−09 53
Liver Age rs1797874 3 12529592 C;A 0.441 −0.140 0.023 2.10E−09 123 TSEN2;C3orf83;MKRN2
Liver Age rs13107325 4 103188709 C;T 0.080 0.271 0.045 1.80E−09 5 BANK1;SLC39A8
Liver Age rs12539772 7 121005636 T;A 0.260 −0.141 0.026 4.20E−08 23 WNT16;FAM3C
Liver Age rs11111209 12 102600598 T;C 0.114 0.201 0.036 1.80E−08 14
Liver Age rs77353655 12 102671553 A;G 0.107 0.201 0.037 4.90E−08 13
Liver Age rs76652635 13 74689496 A;G 0.072 −0.257 0.045 1.50E−08 2 KLF12
Liver Age rs45515493 14 21572642 C;G 0.118 −0.195 0.033 5.10E−09 14 NDRG2;ARHGEF40;ZNF219;TMEM253
Liver Age rs370844658 20 32679575 A;ATT 0.341 −0.133 0.024 2.60E−08 213 RALY;EIF2S2

Chr: chromosome number, position: position on the chromosome, Alleles: effect;non-effect allele, MAF: minor allele frequency, Beta: beta coefficient of GWAS, SE: standard error of beta coefficient, P-
value: p-value on beta coefficient, #SNPS: number of SNPs in LD with main SNP, Closest Genes: closest genes to rsID. All p-values are two sided and not corrected for multiple comparisons, but reported
findings are GWA-significant (5 × 10−8).
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Fig. 5 -log10(pvalue) vs. chromosomal position: GWAS on AbdAge, Liver, and Pancreas Accelerated Age. A GWAS results for accelerated abdominal
aging (AbdAge); Lambda GC:1.04. Sample size: 32,475. B Liver Accelerated Age. Lambda GC: 1.04; Sample size: 40,760 and C Pancreas Accelerated Age.
LambdaQC: 1.03; Sample Size: 32,548;-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5 × 10−8. All GWAS p values reported are
2-sided and not corrected as shown for multiple comparisons; however, all results lower than 5 × 10–8 achieved Bonferroni-level of significance.
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(correlation= 0.043), champagne plus white wine intake (correla-
tion= 0.043), and beer plus cider intake (correlation= 0.042).

Conversely, the three environmental variable categories most
associated with decelerated abdominal aging are physical activity,
smoking and diet. Specifically, 34.3% of physical activity variables are
associated with decelerated abdominal aging, with the three largest
associations being with practicing strenuous sports (correlation=
0.078), frequency of strenuous sports in the last four weeks
(correlation= 0.077), and duration of strenuous sports (correlation=
0.076). 29.2% of smoking variables are associated with decelerated
abdominal aging, with the three largest associations being with
smoking status: never (correlation= 0.073), time from waking to first
cigarette (correlation= 0.063), and age started smoking (correla-
tion= 0.062). 7.0% of diet variables are associated with decelerated
abdominal aging, with the three largest associations being with cereal
intake (correlation= 0.058), no major dietary changes in the five
years (correlation= 0.036), and bread intake (correlation= 0.030).

Socioeconomic variables associated with accelerated abdominal
aging. The two socioeconomic variable categories that are associated
with accelerated abdominal aging are social support (no leisure or
social activity among the ones listed: correlation= 0.033) and
household (renting from local authority, local council, or housing
association: correlation= 0.028).

Conversely, the three socioeconomic variable categories most
associated with decelerated abdominal aging are sociodemo-
graphics, employment, and education. Specifically, 14.3% of
sociodemographics variables are associated with decelerated
abdominal aging (one association: not receiving attendance/
disability/mobility allowance. correlation= 0.040). 13.0% of
employment variables are associated with decelerated abdom-
inal aging, with the three largest associations being with length
of working week for main job (correlation= 0.044), current
employment status: in paid employment or self-employed
(correlation= 0.043), and frequency of travelling from home to
job workplace (correlation= 0.029). 12.5% of education vari-
ables are associated with decelerated abdominal aging (one
association: college or university degree; correlation= 0.048).

Predicting accelerated abdominal aging from biomarkers,
clinical phenotypes, diseases, environmental variables, and
socioeconomic variables. We predicted accelerated abdominal
aging using variables from the different X-datasets categories

(biomarkers, clinical phenotypes, diseases, environmental vari-
ables and socioeconomic variables). Specifically we built a model
using the variables from each of their respective subcategories
(e.g blood pressure biomarkers), and found that no modalities
could explain more than 5% of the variance in accelerated
abdominal aging.

Phenotypic, genetic, and environmental correlation between
liver MRI-based and pancreas MRI-based accelerated abdom-
inal aging. Liver MRI-based and pancreas MRI-based accelerated
abdominal aging are phenotypically correlated (0.526 ± 0.005).
For comparison, the ensemble models trained on two datasets
that differ only in their preprocessing (raw vs. contrasted images)
yielded accelerated abdominal aging definitions that are
0.810 ± 0.001 correlated (liver MRIs) and 0.841 ± 0.002 correlated
(pancreas MRIs). Liver MRI-based and pancreas MRI-based
accelerated abdominal aging share genetic architecture, and are
genetically 0.863 ± 0.036 correlated.

We found moderate to modest, but non-zero, Pearson
correlation between AbdAge and other organs, ranging from
0.45 (Heart MRI-based biological age), 0.35 for musculoskeletal
aging, to a low of 0.04 (OCT eye age) (Supplementary Figure S7),
with a median correlation of 0.15. We found we had evidence for
shared genetic architecture between AbdAge and Liver and
Pancreas Accelerated Age (genetic correlation of 0.95). Further,
we found a significant, but moderate, genetic correlation between
AbdAge and accelerated musculoskeletal spinal aging (genetic
correlation of 0.56) and low genetic correlation with skeletal knee
and hip aging (genetic correlation of 0.23 and 0.25).

We also evaluated the correlation between liver MRI-based and
pancreas MRI-based accelerated aging phenotypes in terms of
their association with non-genetic variables. For example, are the
environmental exposures associated with liver MRI-based
accelerated aging similar to those associated with pancreas
MRI-based accelerated aging? We found that the correlation
between these two phenotypes to be 0.959 in terms of biomarkers,
0.926 in terms of associated clinical phenotypes, 0.793 in terms
of diseases, 0.978 in terms of environmental variables and
0.969 in terms of socioeconomic variables (Fig. 6). These results
can be interactively explored at https://www.multidimensionality-
of-aging.net/correlation_between_aging_dimensions/xwas_
univariate.

Fig. 6 Correlation, or overlap, of non-genetic associations between Liver and Pancreas Aging. X-Axis denotes the category of non-genetic variable, and
the y-axis is the correlation of the association sizes between Pancreas and Liver Aging phenotypes.
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Discussion
We built the first abdominal age predictor, AbdAge, by training
deep convolutional neural networks to predict age from liver and
pancreas MRI images (R2= 73.3 ± 0.6; RMSE= 2.94 ± 0.03).

The attention maps of the models built on liver MRI images
highlighted various abdominal regions including the liver, the
stomach, the spleen, as well as muscle, bones, and adipose tissue.
The attention maps of the models built on pancreas MRI images
highlighted similar features aside from the pancreas, including the
liver. The similarities between liver-based and pancreas-based
attention maps suggest that our models do not capture liver aging
and pancreas aging specifically, but instead capture general
abdominal aging. The abdomen undergoes significant macro-
scopic changes as we age1, which were likely leveraged by the
convolutional neural networks. In terms of liver aging, it is known
that liver function decreases with age26 and that the liver ages at
the cellular level, which is for example associated with low-grade
inflammation27. There is less evidence that the liver undergoes
clear macroscopic changes that could be captured by MRI
images28, but it has been reported that with age the color of the
liver gets darker, blood flow decreases, liver volume decreases3,29,
and the prevalence of liver diseases, such as nonalcoholic fatty
liver disease, alcoholic liver disease, cirrhosis, and fibrosis,
increase with age2, which might have been leveraged by our
models to predict chronological age30. In terms of pancreas aging,
age-related changes visible on MRI images include pancreatic
atrophy, fatty degeneration, and lobulation31. Finally, aging is also
associated with abdominal changes in adipose tissue32,33,
muscles34–36, and bones37.

Further confirming the intuition derived from the attention
maps, liverMRI-based, and pancreas MRI-based accelerated aging
are phenotypically, genetically, and environmentally correlated
(respective correlations of .526, .863, and .978). As a consequence,
the liver MRI-based age abdominal predictor should not be
interpreted as a liver age predictor (nor should the pancreas MRI-
based abdominal age predictor be considered specific to the
pancreas). To build such organ-specific predictors, we believe it is
necessary to perform image segmentation to pre-isolate the liver
and pancreas features from their surrounding tissues and organs.
Despite this limitation, liver and pancreas images did capture
non-redundant/overlapping information regarding abdominal
aging, as demonstrated by (1) the gain of prediction accuracy
when combining both models (R2= 73.3 ± 0.6 vs. 71.5 ± 0.6%)
and (2) by the individual differences in GWAS signals (despite
their large genetic correlation). Specifically, the ensemble model
highlighted EFEMP1 as associated with general abdominal aging,
but this association was not found for pancreas MRI-based
accelerated aging, despite analyzing sample sizes for the analysis
(32,475 vs. 32,548). This difference, along with the fact that
EFEMP1 was also associated with liver MRI-based accelerated
aging, suggests that this association is driven by features obser-
vable on liver MRIs and not on pancreas MRI.

The association between abdominal aging and blood biochem-
istry biomarkers such as alanine aminotransferase, aspartate ami-
notransferase suggest that abdominal aging is linked to liver
function. Since age prediction is in part driven by the tissue sur-
rounding the organs, a natural hypothesis is that the model also
relies on body/liver fat percentage, whichi increases with age38. This
hypothesis is partly supported by the fact that the biomarker
category most associated with accelerated aging is body impedance,
which increases with body fat percentage. Similarly, metabolism
biomarkers such as HDL cholesterol, apolipoprotein A and glycated
haemoglobin A1c (a diabetes biomarker) are associated with
accelerated abdominal aging. However, and perhaps surprisingly,
both body mass index, hip circumference, and weight are associated
with decelerated abdominal aging. A possible explanation is that

both old age39 and disease (e.g pancreas cancer40, cirrhosis41) are
associated with weight loss.

Aside from these biomarkers which can be linked to abdominal
health, accelerated abdominal aging is also associated with bio-
markers, clinical phenotypes, and diseases linked to other organ
systems’ health that cannot be not directly observed from liver
and pancreas MRIs. For example, it is associated with poor car-
diovascular health (e.g blood pressure, chest pain, hypertension,
atrial fibrillation and flutter, chronic ischaemic heart disease),
brain health (cognitive tests, brain MRI volumes, mental health
disorders such as fed up feelings and mood swings), and pul-
monary function (e.g spirometry, shortness of breath, chronic
obstructive pulmonary disease, asthma, and pleural effusion).
More generally, accelerated abdominal aging is associated with
poor general health (e.g general health rating, recent weight loss,
long-standing illness, disability or infirmity, personal history of
disease, and medical treatment), suggesting that accelerated aging
in the different organ systems is linked. We explore this
hypothesis of the multidimensionality of aging in a different
paper42. Interestingly, accelerated abdominal aging is also corre-
lated with facial aging.

In terms of environmental variables, we found that smoking and
sedentary behavior (e.g time spent watching television, lack of
strenuous physical activity) is associated with accelerated abdominal
aging, in accordance with the unambiguous literature on the
subject43,44. We found some diet variables to be associated with
decelerated abdominal aging (e.g cereal intake, bread intake). More
generally, having a stable weight was associated with decelerated
aging. Alcohol had a mixed association, with champagne, white
wine, beer, cider, and red wine intake being all associated with
accelerated abdominal aging, while alcohol intake frequency was
associated with decelerated abdominal aging, possibly reflecting the
complex literature on the topic45. Socioeconomic status (e.g edu-
cation, income) was also negatively correlated with accelerated
abdominal aging. In a developed country such as the US, the richest
1% live more than a decade longer than their poorest 1% coun-
terparts, on average (10.1 ± 0.2 years for females, 14.6 ± 0.2 years
longer for males)46. This difference could be mediated by better
access to healthcare and health literacy47.

We speculate on possible mechanisms of abdominal aging and
future avenues of research. We identified two environmental
factors linked to abdomen “aging”, including alcohol consump-
tion and smoking behavior in our XWASs. Alcohol consumption
and smoking are risk factors for chronic fibrosis of the liver and
pancreas. As pointed out by a reviewer, liver, and pancreas
stromal stellate cell response may be one path to liver and pan-
creatic aging. Stellate cells are Vitamin A/retinol storing cells48

that are in nascent numbers in a developed and “healthy”
organ48,49, but proliferate when stimulated, putatively by envir-
onmental exposures such as smoking and alcohol50. These cells
also may be a source of, or induce circulating cytokines pro-
liferation, leading to possible liver and pancreas damage. The
responses mediated by stellate cells have been connected to
fibrosis and cancer both in the liver and pancreas49,51. It is
unclear whether stromal stellate cells of the pancreas and liver can
be detected, or are being detected, by the MRIs utilized in this
study. Future lines of investigations should examine, perhaps with
the use of emerging image segmentation approaches, the role of
stellate cells and predicted liver and pancreas age. A second line
of investigation includes whether accelerated abdomen age is
associated with fibrosis and/or pancreatic or liver cancer.

Abdomen Age, for the most part, is correlated with some, but
not all, age predictors measured on different organs and tissues.
Specifically, we examined the predicted accelerated AbdAge ver-
sus predicted accelerated cardiac, brain, eye, and musculoskeletal
aging age dimensions. The major conclusion of these findings is
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that AbdAge is coincident with cardiac-MRI-based aging to a
moderate extent. That is, individuals who are predicted to have
older AbdAge may have younger predicted MRI-based Cardiac
Age, for example. However, this was an exception: Abdomen Age
is independent of the predicted biological age of other organs
(median correlation across all 28 aging phenotypes: 0.15). We
examined genetic architecture shared between AbdAge and other
accelerated aging phenotypes, hypothesizing that abdominal age
may be genetically similar to other dimensions of aging, such as
musculoskeletal aging. Specifically, abdominal and spinal accel-
erated age have a large and significant positive genetic correlation
(0.57): the SNPs that are associated with AbdAge are also asso-
ciated with spine aging. The genetic correlation was weaker for
other musculoskeletal dimensions, such as knee and hip skeletal
ages. We had limited data to support the shared genetic archi-
tecture between AbdAge and other MRI-based aging phenotypes.
AbdAge and cardiac phenotypic aging highlights potential co-
incident aging; however, the genetic correlation findings between
AbdAge and musculoskeletal age phenotypes indicate shared
biology with spinal aging, but not hip or knee, may explain the
phenotypic correlation. Another explanation may be that the
deep learning algorithm may be identifying physiological features
in common in the AbdAge and musculoskeletal images. To note,
other indicators of aging biology, such as telomere length, exhibit
substantial variation across tissues52, and Demanelis and collea-
gues observed a near zero correlation between pancreas and
skeletal tissue telomere length.

We found that accelerated abdominal aging is heritable
(hg2= 26.3 ± 1.9%) and identified GWA-significant signals across
all three phenotypes in non-coding or intergenic regions. For
example, we found loci associated with AbdAge and Pancreas Age
in genes or in genomic locations associated with another pheno-
type of aging, age-related macular degeneration (e.g.53). GWA in
this region has been complex to untangle54 One of the genes,
PLEKHA1, has exhibited pleiotropy and also been connected with
type 2 diabetes55 and weight and height56 in new massive and
multi-ethnic studies of the disease. Of interest, Sakaue et al56

accounted for non-linear interactions with age and sex and age-
squared in estimating the associations. Second, we found an
intergenic locus of the gene EFEMP1 in both AbdAge and Liver
Accelerated Age phenotypes. Other loci in this gene have been
associated with other dimensions of aging, including “premature”
aging and white matter density (a risk marker for dementia)57,58.
Further, like PLEKHA1, EFEMP1 is also connected to adiposity
and body fat distribution59.

In conclusion, our biological age predictor can be used to assess
abdominal aging and defines an accelerated aging phenotype that
may be linked to disease and complications. The GWAS signals may
also hint at possible new therapeutic gene targets for intervention or
new instruments to study causality. Regarding the latter, one
approach we aim to embark on is “Mendelian Randomization”60,61

where genetic variants for one trait (e.g., AbdAge) are associated
with the genetic variants of another trait (e.g., cancer or type 2
diabetes) to causally infer the connection between them. Addition-
ally, our predictor could be used on clinical trials to assess the effect
of emerging rejuvenating therapies62 on abdominal organs and tis-
sue. Other age predictors such as the DNA methylation clock are
already leveraged to this end18,63,64 but, as aging is
multidimensional42,65, diverse predictors will be needed to fully
measure the therapeutic effect of candidate drugs on the different
organs and tissues.

Methods
We confirm that our research complies with all ethical regulations and is approved
by UK Biobank (project ID: 52887) and was deemed not human subjects research
by Harvard IRB (IRB16-2145) as defined by DHHS or FDA regulations; subjects

are deidentified by the UK Biobank and we, the investigators, had no contact with
the subjects.

Cohort dataset: participants of the UK Biobank. We leveraged the UK Biobank25

cohort (project ID: 52887). The UKB cohort consists of data originating from a
large biobank collected from 502,211 de-identified participants in the United
Kingdom that were aged between 37 years and 74 years at enrollment (starting in
2006). Out of these participants, 44,481 had liver MRIs collected from them, and
36,591 had pancreas MRIs collected from them. The Harvard internal review board
(IRB) deemed the research as non-human subjects research (IRB: IRB16-2145).

Data types and preprocessing
Demographic variables. First, we removed out the UKB samples for which age or
sex was missing. For sex, we used the genetic sex when available, and the self-
reported sex when genetic sex was not available. We computed age as the difference
between the date when the participant attended the assessment center and the year
and month of birth of the participant to estimate the participant’s age with greater
precision. We one-hot encoded ethnicity.

Liver and pancreas MRIs. UKB contains Liver MRI images (field 20204,
45,685 samples for 43,267 participants) of dimensions 288*384, stored as DICOM
files. We removed the 83 images for which the image quality indicator had any flag
on (field 22414). We applied an adaptive histogram equalizer filter to the images to
enhance the contrast. We kept both images, which we named “Raw” and “Con-
trast”. We cropped off the legend on the right side of the images which yielded
images of dimensions 288*350, that we stored as.jpg images. The UKB also con-
tains pancreas images (field 20259, 37,619 samples for 35,285 participants). We
followed the same pipeline used for the preprocessing of the liver images to pre-
process the pancreas images and obtained 36,784 images. A sample of preprocessed
abdominal (liver and pancreas) images can be found in Fig. 1A.

Data augmentation. To prevent overfitting and increase our sample size during the
training we used data augmentation66 on the images. Each image was randomly shifted
vertically (maximal amplitude ±10%) and horizontally (maximal amplitude ±10%), as
well as rotated (maximal angle ±10 degrees). We chose the hyperparameters for these
transformations’ distributions to represent the variations we observed between the
images in the initial dataset. For example, we observed similar variation between
images in the vertical and the horizontal direction, so both the random vertical and
horizontal shifts were sampled from the [−10%, +10%] uniform distribution.

The data augmentation process is dynamically performed during the training.
Augmented images are not generated in advance. Instead, each image is randomly
augmented before being fed to the neural network for each epoch during the
training.

Machine learning algorithms
Convolutional neural networks architectures. We used transfer learning67–69 to
leverage two different convolutional neural networks70 [CNN] architectures pre-
trained on the ImageNet dataset71–73 and made available through the python Keras
library74: InceptionV375 and InceptionResNetV276. We considered other archi-
tectures such as VGG1677, VGG1977, and EfficientNetB778, but found that they
performed poorly and inconsistently on our datasets during our preliminary
analysis and we therefore did not train them in the final pipeline. For each
architecture, we removed the top layers initially used to predict the 1000 different
ImageNet images categories. We refer to this truncated model as the “base CNN
architecture”.

We added to the base CNN architecture what we refer to as a “side neural
network”. A side neural network is a single fully connected layer of 16 nodes,
taking the sex and the ethnicity variables of the participant as input. The output of
this small side neural network was concatenated to the output of the base CNN
architecture described above. This architecture allowed the model to consider the
features extracted by the base CNN architecture in the context of the sex and
ethnicity variables. For example, the presence of the same anatomical feature can be
interpreted by the algorithm differently for a male and for a female. We added
several sequential fully connected dense layers after the concatenation of the
outputs of the CNN architecture and the side neural architecture. The number and
size of these layers were set as hyperparameters. We used ReLU79 as the activation
function for the dense layers we added, and we regularized them with a
combination of weight decay80,81 and dropout82, both of which were also set as
hyperparameters. Finally, we added a dense layer with a single node and linear
activation to predict age.

Compiler. The compiler uses gradient descent83,84 to train the model. We treated
the gradient descent optimizer, the initial learning rate, and the batch size as
hyperparameters. We used mean squared error [MSE] as the loss function, root
mean squared error [RMSE], as the metric and we clipped the norm of the gradient
so that it could not be higher than 1.085.

We defined an epoch to be 32,768 images. If the training loss did not decrease
for seven consecutive epochs, the learning rate was divided by two. This is
theoretically redundant with the features of optimizers such as Adam, but we found
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that enforcing this manual decrease of the learning rate was sometimes beneficial.
During training, after each image has been seen once by the model, the order of the
images is shuffled. At the end of each epoch, if the validation performance
improved, the model’s weights were saved.

We defined convergence as the absence of improvement on the validation loss
for 15 consecutive epochs. This strategy is called early stopping86 and is a form of
regularization. We requested the GPUs on the supercomputer for ten hours. If a
model did not converge within this time and improved its performance at least
once during the ten hours period, another GPU was later requested to reiterate the
training, starting from the model’s last best weights.

Training, tuning and predictions. We split the entire dataset into ten data folds by
randomly assigning each participant into a fold. We manually tuned some of the
hyperparameters before performing a simple cross-validation. We describe the
tuning procedures in greater detail in the Supplementary Methods.

Interpretability of the machine learning predictions. To interpret the models,
we used attention maps (saliency and Grad-RAM). See Supplementary Methods.

Ensembling to improve prediction and define aging dimensions. We built a
three-level hierarchy of ensemble models to improve prediction accuracies. At the
lowest level, we combined the predictions from different algorithms on the same
dataset. For example, we combined the predictions generated by InceptionRes-
Netv2 and Inceptionv3 from raw liver MRI images into a single raw liver MRI-
based prediction. At the second level, we combined the predictions from the dif-
ferent preprocessing (raw and contrasted images) into a prediction for a specific
organ (liver or pancreas). For the third and highest level, we combined all pre-
dictions into a general abdomen-based prediction. The ensemble models from the
lower levels are hierarchically used as components of the ensemble models of the
higher models. For example, the ensemble model built by combining the algo-
rithms trained on raw liver MRIs is leveraged when building the general abdominal
aging ensemble model.

We built each ensemble model separately on each of the ten data folds. For
example, to build the ensemble model on the testing predictions of the data fold #1,
we trained and tuned an elastic net on the validation predictions from the data fold
#0 using a 10-folds inner cross-validation, as the validation predictions on fold #0
and the testing predictions on fold #1 are generated by the same model. We used
the same hyperparameters space and Bayesian hyperparameters optimization
method as we did for the inner cross-validation we performed during the tuning of
the non-ensemble models.

To summarize, the testing ensemble predictions are computed by concatenating
the testing predictions generated by ten different elastic nets, each of which was
trained and tuned using a 10-folds inner cross-validation on one validation data
fold (10% of the full dataset) and tested on one testing fold. This is different from
the inner-cross validation performed when training the non-ensemble models,
which was performed on the “training+validation” data folds, so on 9 data folds
(90% of the dataset).

Evaluating the performance of models. We evaluated the performance of the
models using three different metrics: R-Squared [R2], root mean squared error
[RMSE], and mean absolute error [MAE]. We computed a confidence interval on
the performance metrics in two different ways. First, we computed the standard
deviation between the different data folds. The test predictions on each of the ten
data folds are generated by ten different models, so this measure of standard
deviation captures both model variability and the variability in prediction accuracy
between samples. Second, we computed the standard deviation by bootstrapping
the computation of the performance metrics 1,000 times. This second measure of
variation does not capture model variability but evaluates the variance in the
prediction accuracy between samples.

Abdominal age definition. We defined the abdominal age of participants for a
specific abdominal dimension as the prediction outputted by the model trained on
the corresponding dataset, after correcting for the bias in the residuals.

We indeed observed a bias in the residuals. For each model, participants on the
older end of the chronological age distribution tend to be predicted younger than
they are. Symmetrically, participants on the younger end of the chronological age
distribution tend to be predicted older than they are. This bias does not seem to be
biologically driven. Rather it seems to be statistically driven, as the same 60-year-
old individual will tend to be predicted younger in a cohort with an age range of
60–80 years, and to be predicted older in a cohort with an age range of 40–60. We
discuss the cause of this bias in the residuals more in detail in the supplementary.
We ran a linear regression on the residuals as a function of age for each model and
used it to correct each prediction for this statistical bias.

After defining biological age as the corrected prediction, we defined accelerated
aging as the corrected residuals. For example, a 60-year-old whose liver MRI
predicted an age of 70 years old after correction for the bias in the residuals is
estimated to have a liver MRI-based abdominal age of 70 years, and an accelerated
abdominal aging of ten years.

This step of correction of the predictions and the residuals takes place after the
evaluation of the performance of the models but precedes the analysis of the
abdominal ages properties.

Correlation of abdomen, pancreas, and liver age with other accelerated age
predictors. We correlated the abdomen age predicted outputs with the predicted
output of 28 biological age predictors that we developed on other organ and organ
systems, which include, Heart (MRI and ECG), Musculoskeletal (X-Ray), Arterial
(Carotid ultrasound), Brain (MRI), eyes (OCT), and physiological measures (e.g.,
pulmonary function, blood laboratory values). For complex image data, we used a
deep learning model building approach that is similar to that documented
above9,12,87,88.

Genome-wide association of accelerated abdominal aging. The UKB contains
genome-wide genetic data for 488,251 of the 502,492 participants89 under the
hg19/GRCh37 build. We used the average bias-corrected accelerated aging value
(actual minus the predicted age) as the phenotype in the GWASs (see Supple-
mentary Methods- Generating average predictions for each participant). Next, we
performed genome-wide association studies [GWASs] to identify single-nucleotide
polymorphisms [SNPs] associated with accelerated aging in each abdominal
dimension using BOLT-LMM90,91 and estimated the the SNP-based heritability for
each of our biological age phenotypes, and we computed the genetic pairwise
correlations between dimensions using BOLT-REML92,93. We used the v3 imputed
genetic data to increase the power of the GWAS, and we corrected all of them for
the following covariates: age, sex, ethnicity, the assessment center that the parti-
cipant attended when their DNA was collected, and the 20 genetic principal
components precomputed by the UKB. We used the linkage disequilibrium [LD]
scores from the 1000 Human Genomes Project94. To avoid population stratifica-
tion, we performed our GWAS on individuals with White ethnicity.

Identification of SNPs associated with accelerated abdominal aging. We identified
the SNPs associated with accelerated abdominal aging dimensions using the BOLT-
LMM90,91 software (p-value of 5e-8). The sample size for the genotyping of the X
chromosome is one thousand samples smaller than for the autosomal chromo-
somes. We, therefore, performed two GWASs for each aging dimension. (1)
excluding the X chromosome, to leverage the full autosomal sample size when
identifying the SNPs on the autosome. (2) including the X chromosome, to identify
the SNPs on this sex chromosome. We then concatenated the results from the two
GWASs to cover the entire genome, at the exception of the Y chromosome.

We used the Functional Mapping and Annotation (FUMA) software on the
genome-wide association from each Abdomen-related aging phenotype (AbdAge,
Pancreas and Liver Age)95 to identify (1) the loci associated with each of the traits,
and the (2) nearest protein coding genes. We have also provided public links to the
FUMA analyses, located here: AbdAge: https://fuma.ctglab.nl/browse/400, Liver
Age: https://fuma.ctglab.nl/browse/401, and Pancreas Age: https://fuma.ctglab.nl/
browse/402. We document our quality control procedure in the Supplementary
Methods.

Heritability and genetic correlation. We estimated the heritability of the accelerated
aging dimensions on the observed scale using the BOLT-REML92 software. We
included the X chromosome in the analysis and corrected for the same covariates
as we did for the GWAS. Using the same software and parameters, we computed
the genetic correlations between accelerated aging in the two image-based
abdominal dimensions and a priori accelerated aging phenotypes, including cardiac
MRI9 and musculoskeletal (hip, spine, and knee) X-ray age predictors12.

We annotated the significant SNPs with their matching genes using the
following four steps pipeline using the FUMA annotation software95.

Non-genetic correlates of accelerated abdominal aging. We identified non-
genetically measured (i.e factors not measured on a GWAS array) correlates of each
aging dimension, which we classified in six categories: biomarkers, clinical phe-
notypes, diseases, family history, environmental, and socioeconomic variables. We
refer to the union of these association analyses as an X-Wide Association Study
[XWAS]. (1) We define as biomarkers the scalar variables measured on the par-
ticipant, which we initially leveraged to predict age (e.g. blood pressure, Supple-
mentary Data Table S2). (2) We define clinical phenotypes as other biological
factors not directly measured on the participant but instead collected by the
questionnaire, which we did not use to predict chronological age. For example, one
of the clinical phenotypes categories is eyesight, which contains variables such as
“wears glasses or contact lenses”, which is different from the direct refractive error
measurements performed on the participants, which are considered “biomarkers”
(Supplementary Data Table S5). (3) Diseases include the different medical diag-
noses categories listed by UKB (Supplementary Data Table S8). (4) Family history
variables include illnesses of family members (Supplementary Data Table S11). (5)
Environmental variables include alcohol, diet, electronic devices, medication, sun
exposure, early life factors, medication, sun exposure, sleep, smoking, and physical
activity variables collected from the questionnaire (Supplementary Data Table S14).
(6) Socioeconomic variables include education, employment, household, social
support, and other sociodemographics (Supplementary Data Table S17). We
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provide information about the preprocessing of the XWAS in the Supplementary
Methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data are available by request from UK Biobank but are not available freely due to
data privacy laws; for access, see https://www.ukbiobank.ac.uk/enable-your-research/
apply-for-access. The processed age predictions will be available at request from UK
Biobank and will be browsable in the catalog. The results can be interactively and
extensively explored at https://www.multidimensionality-of-aging.net/, a website where
we display and compare the performance and properties of the different biological age
predictors we built. Select “Abdomen” as the aging dimension on the different pages to
display the subset of the results relevant to this publication. The GWAS results (and
summary statistics via FigShare) can be found here: AbdAge: https://fuma.ctglab.nl/
browse/400 (via FigShare: 10.6084/m9.figshare.19361999 and https://figshare.com/
articles/dataset/GWAS_Age_Abdomen_X_bgen_stats_gz/19361999), Liver Age: https://
fuma.ctglab.nl/browse/401 (via FigShare: 10.6084/m9.figshare.19361972 and https://
figshare.com/articles/dataset/GWAS_Age_AbdomenLiver_X_bgen_stats_gz/19361972)
and Pancreas Age: https://fuma.ctglab.nl/browse/402 (via FigShare: 10.6084/m9.figshare.
19361957 and https://figshare.com/articles/dataset/GWAS_Age_AbdomenPancreas_
X_bgen_stats_gz/19361957).

Code availability
Our code can be found on github: https://github.com/Deep-Learning-and-Aging. For the
genetics analysis, we used the BOLT-LMM90,91 (v. 2.3.2) and BOLT-REML92 (v. 2.3.2),
and FUMA (v1.3.7) software. The software versions for the deep learning pipeline are
listed here and in the Supplementary Information: https://github.com/alanlegoallec/
Multidimensionality_of_Aging/blob/main/Core_and_Images_pipeline/requirements.txt.
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